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INTRODUCTION 
The need to understand the relationship between cognitive and physical processes is most 
apparent at the phonetic and phonological levels of language production and perception. 
There is agreement that semantics and syntax call for cognitively oriented modelling, whereas 
the myodynamics, aerodynamics and acoustics of speech call for physically oriented 
modelling. Although it seems that the cognitive and physical perspectives are irreconcilable 
we do need to relate the two, especially when constructing models designed to simulate 
language as a whole. 

For both cognitive and physical modelling it is appropriate to assume that we are dealing 
essentially with a knowledge-based system based on an adequate theory of language. We 
must distinguish the different types of knowledge within the system, and choose the right 
representational format for that knowledge. Furthermore, is the system to be given, once and 
for all, the entire knowledge base, or is it to somehow acquire the knowledge for itself - and if 
so how? 

DIFFERENT TYPES OF KNOWLEDGE 
Within the phonetic part of the system we can distinguish several types of knowledge. Firstly 
there is non-cognitive knowledge: the physical system knows to behave in a certain way: 
articulator response to motor control is predictable. Neural communication at a sub-cortical 
level ensures coordination between contracting muscles or between articulator movement, the 
detail of which is opaque to higher levels of the system: not only do individual components of 
the physical system behave predictably but much of their related behaviour is also 
predictable. To this extent low level sub-systems respond to control messages which do not 
themselves specify response procedures. The response is necessarily appropriate because its 
specification is itself a constraint on what higher level systems can expect. The more that 
behaviour is an intrinsic property of the low level systems, the more constrained the inventory 
available to high level systems. 

There is thus a trade off: structures intrinsically organised at a low level are simple to 
control, but restricted in their possibilities - unorganized low level structures could do much 
more but require more complicated control organisation above. It seems to be the case that 
low level systems are mostly intrinsically organised (that is, hold their own procedural 
programs), requiring only simple control messages to activate them. However, limited setting 
of the parameters passed as part of the control message is possible. A simple, abstract 
analogous example: 

Suppose an object comprising two numbers with the inbuilt function that they be 
multiplied together, and suppose this function returns its solution (the response). Further 
suppose that the solution is constrained to be within the range 5-7, and that one of the 
numbers is preset at 2. It follows that the other number is a variable adjustable within the 
range 2.5-3.5 - with a default of, say, 3. A simple instruction - GO - issued to this object will 
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return a response of 6 but a more complex Instruction - GO(2.5) - will return a response of 5. 
The object is said to have been tuned by the passing a value to set the variable parameter. 

GO contains no procedural information for the receiving objects. To use the command the 
higher issuing level must have had some means of predicting its probable outcome. The high 
level system knows only that a certain range of behaviour is possible and what messages will 
invoke it: when it wants this behaviour it sends a suitable message. It has learned (constructed 
a model) what response to expect, and that, within limits, responses can be influenced: it does 
not know and need not know how all this happens. 

The setting of parameters other than at their default values originates from cognitive 
processing. There is a decision to adjust the default response to messages. The decision needs 
two major lines of input: a message whose origin is phonological, and knowledge of the 
physical resources and how to use them. The message originates externally to this cognitive 
area of phonetics, whereas knowledge of the response range of the physical system is internal 
to cognitive phonetics. Extrinsic messages and intrinsic knowledge (or structured 
information) are brought together in the decision procedure. The output is messages to the 
physical structures. 

I stress again that in the model described here the cognitive level does not know how the 
physical structures work: only that those structures respond in certain ways to particular 
messages, and that the responses can be adjusted by a tuning process which sets some 
parameters away from their default values without changing the basic response behaviour. 

KNOWLEDGE ACQUISITION AND REPRESENTATION 
As yet we are unable to specify precisely what the systems need to know in order to work 
properly. There are two reasons for this:  

• we have insufficient data, and  
• traditional theories of speech production are essentially descriptive in nature, and 

descriptive theories are not necessarily helpful to simulation model building.  
Traditionally linguists and phoneticians use rules or productions for the representation of 

knowledge. There are arguments for and against the idea that the human system itself contains 
rules of this type - they may be just an external convenient device of the linguist. What the 
linguist does is set up descriptions of what is observed: the account itself is not observed. This 
descriptive modelling is quite different from building a simulation. A simulation is a working 
model - abstract or real - which must be explicit shout the internal structure of what is being 
emulated, rather than just account for its effects on its environment. Descriptive modelling 
does come into its own by being able to compare accounts of the behaviour of the real system 
and the simulation: if they converge then the simulation is evaluated as good. 

A currently popular method of resolving the problem caused by insufficient data and an 
unsuitable linguistic theory is to create a device that learns the necessary knowledge for itself. 
Learning involves the acquisition and organisation of information by an active processing 
device. 

Simulation therefore involves setting up a knowledge based system which should 
incorporate a shell capable of inputting information from the environment and organising it as 
part of a learning procedure. A simple form of the device might organise the data into patterns 
for spotting redundancy and repetition by inductive reasoning, and evolve sets of rules to 
express the patterning and generalisable features of the data. This part of the device would 
constitute the learning mechanism and the subsequent knowledge base. Organisation of the 
knowledge might be by means of an intrinsic inferencing process. 

The commonest rule representation used in linguistic modelling of this kind is the 
production, if/then or condition/action rule. Inferencing is by means of forward chaining 
(whereby solutions are reached by accumulating considerations of new data) and/or backward 
chaining (in which hypotheses are set in advance and the data examined in terms of those 
hypotheses). 
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One form of knowledge representation uses a classifier system, often seen in the 
phonological and phonetic components of a linguistic description. A classifier represents the 
properties of an object in terms of arrays. Each cell in the array contains a value (usually 
binary) expressing the contribution of that feature to the identification of the target object as 
described by the complete array. The distinctive feature matrix in phonology, for example, is 
just such a set of classifiers. In phonetics we may well want the values in the cells to be more 
complex than simply binary. The binary alphabet though can be as useful to us as a multi-
valued alphabet, by setting up dependent arrays associated with the feature specification of a 
single target object. Thus, one array may be used to filter various primary important features, 
another to drop to a more detailed representation of features pointed to by the first array, and 
so on, where the various levels of representation are formally defined. 

In a simulation model of speech perception where some form of variability reduction is 
essential, one could imagine classifiers set up as masks to filter features which are always 
present in the data, often present, and sometimes present. A perception system would proceed 
through layers of masks to reduce variability and finally attempt a rule based template match 
based on a points scoring system and directed by means of some stored knowledge such as 
elementary phonotactic rules. A full classifier system has the means of evaluating the 
effectiveness of rules in the matching process and of weighting them accordingly. 

An important feature of satisfactory knowledge representation is that the knowledge itself 
should be separate from its manipulation - procedural program control or inferencing 
processes should not be mixed with knowledge. In linguistics this was an important insight by 
Chomsky, though even today the production format for knowledge representation is 
sometimes erroneously taken as some procedural algorithm. 

EXAMPLES OF PHONETIC KNOWLEDGE REPRESENTATION AND LEARNING 

A. Data-driven learning 
Four pieces of data are presented to the device and a generalisation is formulated about 

VOT (voice onset time). The data is expressed in Prolog-like notation, and is available for 
four stops: S1, S2, S3, S4. 

stop(S1), excitation(S1, voiced), position(S1, initial), vot(S1,  0ms). 

stop(S2), excitation(S2, v-less), position(S2, initial), vot(S2, 35ms). 

stop(S3), excitation(S3, v-less), position(S3, initial), vot(S3, 45ms). 

stop(S4), excitation(S4, v-less), position(S4, initial), vot(S4, 40ms). 

The device learns by inbuilt rule the generalisations: 
vot(s, X) :- stop(s), excitation(s, voiced), (X = 0). 

vot(s, X) :- stop(s), excitation(s, v-less), (X >= 35). 

 B. A classifier system for learning generalisations 
In this example the data given before can be taken as the output of a set of feature 

detectors which correspond to the parameters represented in a series of arrays used as three 
masking classifiers: coarse-, medium- and fine-grained. 

1. coarse-grained mask applied to output of feature detectors: 

feature names S1 S2 S3 S4 

excitation 1 0 0 0 

position 1 1 1 1 

vot 0 1 1 1 

where,  
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for excitation,  0 = voiceless, 1 = voiced; 

for position,   0 = not initial, 1 = initial; 

for vot,  0 = none, 1 = some. 

Generalisation: there are different sounds which may or may not have voiced excitation, 
are initial position and may or may not have vot: initial position is redundant information for 
this data. 

2. medium-grained mask: 

feature names S1 S2 S3 S4 

excitation 1 0 0 0 

position - - - - 

vot 0 1 1 1 

where, 
' - ' = not relevant. 
Generalisation: there are different sounds which a simple binary representation of 

excitation or VOT cannot discriminate. 

3. fine-grained mask: 

feature names S1 S2 S3 S4 

excitation 1 0 0 0 

position - - -   

vot 0 35 40 45 

Generalisation: there are 0-excitation sounds which can be discriminated by a more 
detailed representation of VOT. 

 C. Learning based on hypothesis formation 
In this example a hypothesis is generated based on the first datum and then continually 
updated as new data is presented to the device. Sx is an actual example of a signal, s is a 
variable generalised from cumulative Sx's. 
 

datum 1 stop(S1), excitation(Sl, voiced), position(S1, initial), vot(S1, 0ms) 

hypothesis 1 stop(s), excitation(s, voiced), position(s, initial), vot(s, 0ms) 

    

datum 2 stop(S2), excitation(S2, v-lass), position(S2, initial), vot(S2, 3Sms)

hypothesis 2  stop(s), position(s, does_not_discriminate) 

  stop(s1), excitation(s1, voiced), vot(s1, 0ms) 

  stop(s2), excitation(s2, v-less), vot(s2, 35ms) 
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datum 3 stop(s), excitation(S3, v-lass), position(S3, initial), vot (S3, 45ms) 

hypothesis 3  stop(s), excitation(s, v-less), vot(s, X),(X = 35) or (X = 45) 

    

datum 4 stop(s), excitation(S4, v-less), position(S4, initial), vot (S4, 40ms) 

hypothesis 4 stop(s), excitation(s, v-less), vot(s, X), range(s, vot, 35-45) 

 
And now the device can be tested by inputting some new data, in this case deliberately 
defective in that the only two features supplied from the detector are that a stop is detected 
and that it is voiceless: 

defective datum stop(s), excitation(s, v-less) 

response stop(s), position(s, initial), vot(s, 35-45)

 
The device has used its latest hypothesis to repair the defective data supplied, and 

provided an output response. 
  

D. Connectionist paradigm knowledge representation 
In this example two cell arrays, A and B, are set up each with three entries labelled as: 

cell array A cell array B 

initial vot 0ms 

voiced vot > 35ms 

v-less vot n/a 

 
Each cell in array A is connected to each cell in array B. Initially each connection is neutrally 
weighted with a value of 0. Data is presented to the device in the form of associations of data 
features: 

1. vot(S1, 0ms) :- excitation(S1, voiced), position(S1, initial)

2. vot(S2, 35ms) :- excitation(S2, v-less), position(S2, initial) 

3. vot(S3, 45ms) :- excitation(S3, v-less), position(S3, initial) 

4. vot(S4, 40ms) :- excitation(S4, v-less), position(S4, initial) 

 
A rule is incorporated which increments connection weights by 1 if a connection between 

the associated arrays is activated. Thus, 

    a b c d e 
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initial - vot 0ms 0 1 1 1 1 

initial - vot >35ms 0 0 1 2 3 

initial - vot n/a 0 0 0 0 0 

              

voiced - vot 0ms 0 1 1 1 1 

voiced - vot >35ms 0 0 0 0 0 

voiced - vot n/a 0 0 0 0 0 

              

v-less - vot 0ms 0 0 0 0 0 

v-less - vot >3Sms 0 0 1 2 3 

v-less - vot n/a 0 0 0 0 0 

where, 
a = initial indexing of connection strengths  
b = after 1st training data 
c = after 2nd training data  
d = after 3rd training data 
e = after 4th training data  
- and so on ... 
 
The device acquires and updates knowledge which is represented by weighting patterns 

across connections. A rough equivalence with a production representation can be seen by 
simply describing this pattern in terms of productions. Although so simple to be almost 
unworthy of the connectionist label, in the sense that the device is adjusting to its 
environment in an ordered fashion it could be said to be learning during training sessions, hut 
whether it is acquiring rules is an arguable point. Rules written by the observer of the 
connection patterns are a product of the mind of the observer and have not been directly 
observed themselves. 

Furthermore the pattern of connections, it can be argued, does not of itself have any 
meaningful content - whereas the variables and their relationships in a production-based 
system do have meaningful content. To the extent that such content is present in a 
connectionist device it could only reside in the pattern of firing cells within a specified array. 
Any attack on connectionism would focus on this concept of meaningful content -the counter 
attack being, of course, the belief that meaning is imposed from outside the system and has no 
business being incorporated within the system.  

E. The object-oriented approach 
Simple messages are received by objects which cause them (if the message is one of the 

set of recognised messages) to behave in the way internally specified. In the discussion earlier 
it was suggested that such general messages could be accompanied by tuning messages 
designed to set particular parameters of the behavioural process. 

The Pascal-like code which follows defines the behaviour of an abstract object - VOT, 
and allows internal provision of some standard length of VOT for stops in general, but 
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provides also for the external control of that length under certain (cognitively dominated) 
circumstances: 

 
object VOT (class: aerodynamic_constraint); 

variables 

closure[place~of~articulation] : boolean; 
airflow[pulmonic] : boolean; 
vocal_cord_vibration : boolean; 
vocal_cord_tension : boolean; 
{***} air_pressure[supraglottal] : tunable; 
air_pressure[subglottal] : integer; 
voice_onset_time : integer; 
IN_messages 

execute(time: integer) : boolean; 
tune_variable(degree: integer) : boolean; 
OUT_messages 

fail, done : boolean; 
begin {definition object VOT)  

done :- false; 
fail :- false;  
receive(IN_messages); 
  
while execute do  
begin 
  if airflow(pulmonic] and 
  if closure[place_of_erticulation] and 
  if air_pressure[supraglottal] < air_preesure[subglottal] and 
  if vocal_cord_tension 
  then vocal_cord_vibration := true 
     else vocal_cord_vibration := false; 
release_stop; 
  while air_pressure[supraglottal] >= air_pressure[subglottal] do 
  begin 
   {***} if not tune_variable then  
         begin 
            vocal_cord_vibration := false; 
            voice_onset_time := standard; 
         end 
         else 
         begin 
            vocal_cord_vibration := false;  
            voice_onset_time := standard * degree; 
         end; 
         reduce(air~pressure[supraglottal], voice~onset~time);  
   end; 
  
   decrement(time); 
end; {while execute} 
  
done := true;  
cancel (IN~messages);  
send (OUT_messages); 
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end; {definition object VOT} 

 

CONCLUSION 
This paper has been about the representation of phonological and phonetic knowledge in 
simulation modelling of the human speech production and perception processes. I have 
emphasised the COGNITIVE PHONETICS approach, drawing attention to the concept of the 
cognitive control of low level physical structures and shown how we model this. Finally, the 
paper discusses learning strategies which overcome the lack of suitably oriented phonetic and 
phonological knowledge within the discipline of linguistics. 

 


